2 7 M ar 2 00 3 Latin Squares , Partial Latin Squares and its Generalized Quotients

نویسنده

  • Carlos J. Rubio
چکیده

A (partial) Latin square is a table of multiplication of a (partial) quasigroup. Multiplication of a (partial) quasigroup may be considered as a set of triples. We give a necessary and sufficient condition when a set of triples is a quotient of a (partial) Latin square.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The set of autotopisms of partial Latin squares

Symmetries of a partial Latin square are primarily determined by its autotopism group. Analogously to the case of Latin squares, given an isotopism Θ, the cardinality of the set PLSΘ of partial Latin squares which are invariant under Θ only depends on the conjugacy class of the latter, or, equivalently, on its cycle structure. In the current paper, the cycle structures of the set of autotopisms...

متن کامل

An enumeration of spherical latin bitrades

A latin bitrade (T , T⊗) is a pair of partial latin squares which are disjoint, occupy the same set of non-empty cells, and whose corresponding rows and columns contain the same set of entries. A genus may be associated to a latin bitrade by constructing an embedding of the underlying graph in an oriented surface. We report computational enumeration results on the number of spherical (genus 0) ...

متن کامل

On the existence of 3-way k-homogeneous Latin trades

A μ-way Latin trade of volume s is a collection of μ partial Latin squares T1, T2, . . . , Tμ, containing exactly the same s filled cells, such that if cell (i, j) is filled, it contains a different entry in each of the μ partial Latin squares, and such that row i in each of the μ partial Latin squares contains, set-wise, the same symbols and column j, likewise. It is called μ–way k–homogeneous...

متن کامل

Steiner Trades That Give Rise to Completely Decomposable Latin Interchanges

In this paper we focus on the representation of Steiner trades of volume less than or equal to nine and identify those for which the associated partial latin square can be decomposed into six disjoint latin interchanges. 1 Background information In any combinatorial configuration it is possible to identify a subset which uniquely determines the structure of the configuration and in some cases i...

متن کامل

Latin bitrades derived from groups

A latin bitrade is a pair of partial latin squares which are disjoint, occupy the same set of non-empty cells, and whose corresponding rows and columns contain the same set of entries. In ([9]) it is shown that a latin bitrade may be thought of as three derangements of the same set, whose product is the identity and whose cycles pairwise have at most one point in common. By letting a group act ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003